Cardiac Migration of Endogenous Mesenchymal Stromal Cells in Patients with Inflammatory Cardiomyopathy
نویسندگان
چکیده
Introduction. Mesenchymal stromal cells (MSC) have immunomodulatory features. The aim of this study was to investigate the migration and homing potential of endogenous circulating MSC in virus negative inflammatory cardiomyopathy (CMi). Methods. In 29 patients with (n = 23) or without (n = 6) CMi undergoing endomyocardial biopsies (EMB), transcardiac gradients (TCGs) of circulating MSC were measured by flow cytometry from blood simultaneously sampled from aorta and coronary sinus. The presence of MSC in EMB, cardiac inflammation, and SDF-1α mRNA expression were detected via immunohistochemistry and real-time PCR. Results. MSC defined as CD45(-)CD34(-)CD11b(-)CD73(+)CD90(+) cells accounted for 0.010 [0.0025-0.048]%/peripheral mononuclear cell (PMNC) and as CD45(-)CD34(-)CD11b(-)CD73(+)CD105(+) cells for 0.019 [0.0026-0.067]%/PMNC, both with similar counts in patients with or without cardiac inflammation. There was a 29.9% (P < 0.01) transcardiac reduction of circulating MSC in patients with CMi, correlating with the extent of cardiac inflammation (P < 0.05, multivariate analysis). A strong correlation was found between the TCG of circulating MSC and numbers of MSC (CD45(-)CD34(-)CD90(+)CD105(+)) in EMB (r = -0.73, P < 0.005). SDF-1α was the strongest predictor for increased MSC in EMB (P < 0.005, multivariate analysis). Conclusions. Endogenous MSC continuously migrate to the heart in patients with CMi triggered by cardiac inflammation.
منابع مشابه
Immunomodulatory Effects of Mesenchymal Stromal Cells Revisited in the Context of Inflammatory Cardiomyopathy
Myocarditis is a common inflammatory cardiomyopathy, associated with cardiomyocyte apoptosis, which can lead to chronic left ventricular dysfunction. Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. Experimental and clinical studies consistently suppor...
متن کاملGalectin-3 Knockdown Impairs Survival, Migration, and Immunomodulatory Actions of Mesenchymal Stromal Cells in a Mouse Model of Chagas Disease Cardiomyopathy
Therapies based on transplantation of mesenchymal stromal cells (MSC) hold promise for the management of inflammatory disorders. In chronic Chagas disease cardiomyopathy (CCC), caused by chronic infection with Trypanosoma cruzi, the exacerbated immune response plays a critical pathophysiological role and can be modulated by MSC. Here, we investigated the role of galectin-3 (Gal-3), a beta-galac...
متن کاملTumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs
Background: Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. Objective: To characterize and compare the phenotype and cytokines of adipose derived MSCs (...
متن کاملMonocyte Chemotactic Protein-1 Promotes the Myocardial Homing of Mesenchymal Stem Cells in Dilated Cardiomyopathy
Dilated cardiomyopathy (DCM) is the most common form of non-ischemic cardiomyopathy that leads to heart failure. Mesenchymal stem cells (MSCs) are under active investigation currently as a potential therapy for DCM. However, little information is available about the therapeutic potential of intravenous administration of MSCs for DCM. Moreover, how MSCs home to the myocardium in DCM is also uncl...
متن کاملIntravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy.
Obesity is a major global health issue. Obese patients develop metabolic syndrome, which is a cluster of clinical features characterized by insulin resistance and dyslipidemia. Its cardiac manifestation, diabetic cardiomyopathy, leads to heart failure. Bone marrow-derived multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSC) are envisioned as a therapeutic tool...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015